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1. Introduction.

Recently, the study of Dirichlet branes has led to important insights into the behavior

of supersymmetric gauge theories. One approach, which has proved especially powerful, is

to consider con�gurations consisting of intersecting Neveu-Schwarz 5-branes and Dirichlet-

branes [1]-[20]. It was shown by Witten, [5], that such con�gurations often correspond to a

single 5-brane in M theory. A simple scaling argument shows that the quantum behavior of

the resulting gauge theory can then be understood as a classical e�ect in M theory. So far,

in this approach, the background spacetime before adding branes has been taken to be at

(for another important approach which considers branes in Calabi-Yau backgrounds see [21]

and references therein), and the resulting gauge theories have been non-chiral (see, however,

refs. [22], [11]). The main purpose of this paper is to note that brane con�gurations in non-

trivial backgrounds can often lead to chiral gauge theories. We illustrate this by considering

brane con�gurations consisting of NS 5-branes and intersecting D4-branes in a simple class

of orbifold backgrounds. As in the at space case, the brane construction allows us to deduce

various features about the non-perturbative behavior of these theories.

This paper is organized as follows. In Section 2, we describe the C2=ZZM orbifold back-

ground and brane con�guration consisting of Dirichlet 4-branes placed at the orbifold point

and stretched between two Neveu-Schwarz 5-branes. The low-energy dynamics is shown to

be described by a 3+1 dimensional N = 1 theory with SU(N)M gauge group and chiral

matter content. In fact, the gauge theory turns out to be closely related (apart from some

anomalous U(1) factors) to the theories studied in [23], [24]. In Section 3, we study the clas-

sical moduli space of this gauge theory and show that it corresponds to the set of allowed

motions for the brane con�guration; this provides additional evidence that we have identi�ed

the correct gauge theory. In Section 4, we turn to the quantum theory and show how by

considering the con�guration inM theory one can deduce various non-perturbative features

of the low-energy dynamics, pertaining to the Seiberg-Witten spectral curves. Finally, some

generalizations of the basic brane con�guration are discussed in Section 5.

This paper is intended to be a �rst step in a more complete analysis. Two further

generalizations are obvious and will be considered in a subsequent paper. One is to consider

orientifold backgrounds. The resulting chiral theories are in many ways more interesting.

Another is to blow up the orbifold and consider the brane con�guration in the corresponding

ALE space. The resulting smooth background allows for a more controlled analysis in M

theory. The methods outlined in this paper give rise to theories which are, in a sense, closely

related to N = 2 theories. As will become clear below, their matter content can be thought of

as arising from adjoint �elds after a suitable truncation. These methods might consequently

have limited use in the study of chiral theories with spinor matter.
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2. Brane Con�guration and Matter Content.

2.1 The orbifold and brane con�guration.

In this paper we will consider C2=ZZM orbifolds. We choose coordinates so that the C2

involved in the orbifold corresponds to the X4 + iX5 and X8 + iX9 directions. The Type

IIA brane con�guration we consider involves two NS 5-branes and several Dirichlet 4-branes,

as shown in Fig. 1. The NS branes stretch along X1;X2;X3;X4;X5, are placed at the

orbifold point, X8 = X9 = 0, and have de�nite positions in X6;X7. We take them to be

separated by a �nite distance in the X6 direction and to be coincident in the X7 direction.

The D4-branes are taken to lie along X1;X2;X3, and X6 directions and end on the two NS

branes.

2.2 The gauge group and matter content

As is well known, the low-energy dynamics of this con�guration is described by a 3+1

dimensional �eld theory, which lives in the intersection region of the D4 branes and NS

branes. We will show below that NM 4-branes placed at the origin of the ZZM orbifold give

rise to an N = 1 U(N)M gauge theory. The matter content consists of chiral super�elds

which transform under the gauge groups as:

U(N)1 U(N)2 U(N)3 � � � U(N)M

Q1 1 � � � 1

Q2 1 � � � 1
...

...
...

...
...

...

QM 1 1 � � �

(2.1)

Note that the matter content is chiral2.

We now turn to justifying this claim for the gauge group and matter content. First con-

sider the number of supersymmetries. In the absence of the orbifold this brane con�guration

preserves 8 supercharges or N = 2 supersymmetry in 3+1 dimensions: the IIA theory has

32 supercharges, but the presence of 4-branes and NS branes reduces that by a factor of 2 �2.

In the ZZM orbifold we only keep gravitino states for which the vertex operators are invariant

under a rotation by expf(2�i
M
)(J45 � J89)g. This further reduces the supersymmetry by half

leading to 4 supercharges or N = 1 in 3+1 dimensions.

To arrive at the gauge group and matter content it is useful to consider the �nal con�g-

uration built up in two stages. Let us �rst look at a con�guration without the NS branes

where the 4-branes are in�nite along X6 and are placed at the orbifold point. It is well known

2One overall U (1) factor above is \frozen out" while the remaining U (1)s are anomalous; we will have

more to say on this below.
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for compact orbifolds that tadpoles must cancel in the one-loop vacuum amplitude, and that

this constraint is often powerful enough to determine the gauge group and matter content

[25]. In our case, the one loop amplitude only receives a contribution from the cylinder dia-

gram and is easy to work out. Since the C2 on which the orbifold group acts is noncompact,

we do not expect any constraint on the allowed total number of 4-branes: the corresponding

RR ux can always escape to in�nity. This is borne out by an explicit calculation. However,

there are non-trivial constraints which arise from the tadpole cancellation for twisted RR

�elds. Let the orbifold group ZZM act on v = X4 + iX5 and w = X8 + iX9 as:

(v; w)! (� v; ��1 w) ; � � e
2�i

M ; (2.2)

and the corresponding action of the orbifold group on the Chan Paton factors � be repre-

sented by a matrix �:

�! � � 
�1
� : (2.3)

The 4-branes are sources of twisted RR scalars that can only propagate in one of the direc-

tions transverse to the 4-branes (X7). As argued in [26], a one-volume is insu�cient to allow

the Ramond-Ramond ux to escape to in�nity, and the tadpole cancellation condition must

be satis�ed even for in�nite volume. The constraints from the twisted RR tadpoles are then

given by:

tr K� = 0; K = 1; : : : ;M � 1 : (2.4)

Note that � must furnish a representation of the orbifold group and thus M� = 1. This

together with eq. (2.4) allows us to solve for �. We �nd, �rst, that the number of 4-branes

at the orbifold point must be a multiple of M ; we refer to this number hereafter as NM .

Second, we �nd that the matrix �, in a suitable basis, is given by:

� = diagf1� 1N ; �� 1N ; : : : ; �
M�1 � 1Ng ; (2.5)

with 1N being the unit N�N matrix. The gauge and matter content can now be worked out

as well. The corresponding gauge group on the 4-brane worldvolume theory turns out to be

U(N)M . Fluctuations in the X7 direction which survive the orbifold projection contribute

one adjoint �eld for each U(N) factor. Together with the gauge bosons these form an N = 1

vector multiplet in 4+1 dimensions. Finally, from the X4;X5;X8;X9 directions we get

hypermultiplets transforming under the gauge groups as described in eq. (2.1) (we note that

the same orbifold has been considered in [27], [26]).

Now �nally we can add the two NS branes and sandwich the four-branes between them

as in Fig. 1. What is the resulting 3+1 dimensional theory? It is useful for this purpose

to describe the above matter content in the language of 3+1 dimensions. The component

of the gauge �eld, A6, can be paired with the adjoint �elds coming from the X7 direction

3
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Figure 1: The Type IIA brane con�guration for the ZZM orbifold models. There are N

physical four-branes stretched between the NS �ve branes, plus their ZZM images. The six

branes, if present, give extra vectorlike matter. The bending of the NS branes is not shown

in this �gure.

to give a chiral super�eld. Each hypermultiplet will transform as two chiral multiplets in

3+1 dim. language, one of the two chiral multiplets coming from uctuations in the X4;X5

directions, and the other from the X8;X9 directions. One expects the boundary conditions

coming from the ends of the 4 brane, where it terminates on the 5-brane, to freeze some of

these degrees of freedom. Based on the analysis in the absence of the orbifold one expects

the gauge �eld to survive and the chiral mulitiplet coming from the (A6;X
7), uctuations

to be frozen. Similarly, the matter coming from the uctuations in the X4;X5 directions

should survive whereas that from the X8;X9 directions will be frozen out. This �nally gives

rise to the U(N)M theory with the matter content described in eq. (2.1). We note again that

each �eld in eq. (2.1) represents a chiral multiplet so that the theory is chiral.

Above, we �rst considered the 4-branes without NS branes in the orbifold background

and then introduced the NS branes. It is also illuminating to consider things in the opposite

order. Accordingly, let us �rst consider a con�guration of NM 4-branes stretched between

the two NS branes in the absence of the orbifold. The resulting �eld theory is well known

to be an N = 2 theory, with SU(NM) gauge group. The adjoint scalar �eld corresponds

to uctuations of the 4 branes along the X4;X5 directions. It is natural to expect that the

orbifold should correspond to implementing a projection in this theory. In fact, the gauge

theory possesses a U(1) global symmetry under which (in N = 1 language) the gauge �eld
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and its fermionic partner transform as (A�; �) ! (A�; �), and the adjoint and its fermionic

partner as (�; )! ei�(�; ). In general this symmetry is anomalous, however it has a non-

anomalous ZZ2NM discrete subgroup. This discrete subgroup in turn has a ZZM subgroup.

In addition, the gauge symmetry has a ZZM discrete subgroup under which a fundamental

representation is multiplied by diagf1�1N ; ��1N ; : : : ; �M�1�1Ng, with 1N being the unit

N � N matrix. In the N = 2 �eld theory it is natural to identify the orbifold group with

the product of these two ZZM symmetries. On doing so and retaining states invariant under

this product discrete symmetry one gets precisely the U(N)M group and matter content

mentioned above.

3. Brane Motion and the Classical Moduli Space.

In this section we compare the set of allowed motions of the brane con�guration to the

classical moduli space of the gauge theory described above. This will serve two purposes.

First, agreement between the two will give additional evidence that we have identi�ed the

correct gauge theory. Second, in the process we will understand better the role of the various

U(1)s in this theory|an issue which we have so far not fully addressed.

It will be convenient in the following discussion to organize the U(1)s in the following

basis. We will choose the �rst U(1) to be the sum of the U(1) factors, and the other U(1)s

to be orthogonal to the �rst. It is easy to see from eq. (2.1) that none of the matter �elds are

charged under the �rst U(1). In fact one can deduce that this U(1) factor is frozen, i.e. its

coupling vanishes. There are two arguments in support of this. First, for the case of a at

space time background, it was argued in [5], that in the N = 2 theory this overall U(1) must

be frozen. We saw above that for the orbifold background the resulting �eld theory could be

understood as a further truncation of the N = 2 theory; we thus expect the U(1) to continue

to be frozen in it. Second, we will see below that when we interpret this con�guration in M

theory, the genus of the two dimensional surface spanned by the 5-brane worldvolume will

be consistent with the absence of the U(1).

Turning our attention to the remaining U(1)s we notice that they are all anomalous3.

These U(1)s are analogous to anomalous U(1) factors which often arise in string compact-

i�cations [28]. In the context of D-branes anomalous U(1)s were discussed in [27] where

they were shown to play an important role in governing the low-energy dynamics. We will

discuss these U(1)s in some detail below. Here we summarize their essential features which

are important in the present discussion of the classical moduli space. The important point

is that these anomalous U(1)s are broken. The low-energy 3+1 dimensional theory contains

axion �elds which arise from twisted RR �elds, and the anomalies are cancelled by shifting

these axions appropriately [29]. In fact the axions can be regarded as the longitudinal com-

3The ZZ2 orbifold is an exception: in this case the theory is not chiral.
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ponents of the heavy gauge bosons. The only feature that is really important in the present

discussion is that each U(1) will give a D-term contribution to the full potential energy,

which is important in determining the moduli space of the theory (notice also that the U(1)

charges are all traceless, hence no Fayet-Iliopoulos term is generated by loop e�ects).

We are now ready to study the motion of the 4-branes. We begin with a ZZM orbifold

with NM branes located at the orbifold point. The corresponding gauge group is SU(N)M .

The 4-branes can only move along the X4;X5 directions, since they end on NS branes which

only extend along these directions. Each 4-brane hasM�1 images under the ZZM symmetry,

so counting images, we can move sets of M branes away from the orbifold point. Moving M

branes away breaks SU(N)M ! SU(N � 1)M � U(1). If all the 4-branes are moved away

from the orbifold point we are left with a U(1)N�1 gauge symmetry. Since the motion of each

set of M branes is described by one complex number, the moduli space is N dimensional.

Finally, we also note that if N1 physical branes come together away from the orbifold point

we get an enhanced U(N1) gauge symmetry.

Now consider the at directions in the gauge theory. These are in one-to-one correspon-

dence with gauge invariant chiral super�elds made out of the elementary matter �elds in

eq. (2.1). Ignoring the anomalous U(1)s for the moment, these moduli are of two kinds. One

class is best described in terms of the operator:

�i
j = (Q1 � Q2 � � � QM)

i
j ; (3.1)

as:

�k = tr(�)k; (3.2)

for k = 1; � � � ; (N � 1). The second class of \baryonic" directions is given by:

b� = (Q�)
N ; (3.3)

with � = 1; � � � ;M . Altogether, we see that there are N � 1 + M at directions; these

are more than the number of brane degrees of freedom found above. The discrepancy is

corrected when we account for the D-term potential generated by the anomalous U(1)s. We

saw above that there are M � 1 of these, thus their D terms get rid of M � 1 moduli giving

us, �nally, a N dimensional moduli space in agreement with what we found for the motion of

branes. An analysis of the vacuum expectation values also shows that in the moduli space,

generically, a U(1)(N�1) is left unbroken. Finally, one �nds subspaces of the moduli space

which correspond to partially enhanced gauge symmetry, again in accord with what is found

from brane considerations.

4. The Quantum Behavior via M Theory

We will now turn to considering the quantum behavior of the gauge theory described

above. It was found in the previous section that generically in moduli space the theory

6



is in the Coulomb phase with the gauge symmetry being broken to a U(1)(N�1) subgroup.

We would like to see if the corresponding spectral curves, [30], can be determined. In this

analysis we will closely follow [5] where it was pointed out that in M theory, the brane

con�guration corresponding to that in Fig. 1 can be thought of as the worldvolume of a

single NS 5-brane, and that this insight leads to determining the curves.

In [5] the 5-brane worldvolume had in�nite extent along the X0;X1;X2;X3 coordinates,

while spanning a two dimensional surface in the four-manifold parametrized by v = X4+iX5

and t = exp(�s) = exp(�(X6 + iX10)=R). In our case v and w = X8 + iX9 are modded by

the ZZM transformation eq. (2.2). A more convenient representation of this C2=ZZM orbifold

is obtained by embedding it as a hypersurface in C3:

yz � xM = 0: (4.1)

The coordinate mapping is y = vM , z = wM , x = vw; the orbifold singularity is at y = z =

x = 0. In the M theory limit the 5-brane is described by a Riemann surface � embedded in

C3�R1 � S1. This surface is smooth except at the orbifold point, and can be parametrized

as a rational curve by y and t, with z set equal to zero.

Now consider the con�guration shown in Fig. 1, consisting of two NS branes and NM

4-branes (we are counting the branes and their images as distinct) stretching between them.

The two dimensional surface � can now be described by the curve:

t2 +B(y) t+ 1 = 0: (4.2)

Here B is a polynomial of degree N (in y = vM), i.e.,

B(y) = yN + u1y
N�1 + u2y

N�2 + � � �+ uN : (4.3)

Note this surface corresponds to genus N�1 as would be expected for a curve with N�1

photons. As discussed in [5] and [30], the periods of this Riemann surface determine the

gauge couplings of the N�1 U(1) gauge groups.

The asymptotic behavior of t for large y is given by t ' �yN , and t ' �y�N . This tells

us how the two NS branes bend for large y and determines the asymptotic form of the beta

function which goes like
4�

g2
' 2N ln jyj : (4.4)

This agrees with the expected beta function for each of the SU(N) factors.

The coe�cients ui in eq. (4.2) parametrize the moduli space of the theory. It would be

useful to express them in terms of the gauge invariants built out of the elementary �elds in

eq. (2.1). When the 4-branes are su�ciently far (compared to the strong coupling scale(s))

from the orbifold point the leading order dependence of the ui can be determined by classical

7



considerations. To see this, note that eq. (4.2), at �xed t, can be used to solve for y and

thereby yield the positions of the 4-branes. Furthermore, at large enough separation these

positions can be unambiguously related to the gauge invariants, thereby determining the

leading dependence of the ui.

In Section 2, we had described how the gauge theory corresponding to NM 4-branes

placed at a ZZM orbifold point can be thought of as being obtained by starting from an

SU(NM), N = 2, theory and only keeping states invariant under a certain ZZM symmetry. In

fact this provides the simplest way of determining the leading dependence of the coe�cients

ui. One starts with the N = 2 curve,

t2 +B(v) t+ 1 = 0; (4.5)

where B(v) is a polynomial of degree NM given by:

B(v) = vNM + a1v
NM�1+ a2v

NM�2 + � � �+ aNM : (4.6)

In this case the coe�cients are easily determined as (trace of) the appropriate powers of

the adjoint �eld. We now only allow �elds invariant under the ZZM symmetry to have

vacuum expectation values. This means that only integer powers of vM survive in B(v).

The resulting curve thus has a ZZM symmetry, under which v ! e
2�i

M v. To obtain the curve

in the orbifold theory it is natural to identify points related by this symmetry. This amounts

to parametrizing the curve with a variable y = vM . The curve, eq. (4.5), then turns into the

required one, eq. (4.2). As mentioned before, the coe�cients in eq. (4.5) can be determined

in terms of the adjoint �eld and can then be easily expressed in terms of the moduli in the

orbifold theory.

The leading dependence of the ui on the gauge invariants can thus be determined. How-

ever, there can be subleading terms in these relations, depending on strong coupling scales of

the gauge theories involved, which cannot be determined by classical considerations alone4.

In fact, such terms are present in the theories at hand. We know this because these theories

are essentially identical, (apart from the anomalous U(1)s discussed above) to the SU(N)M

theories studied in [23], [24], and their curves have been worked out from �eld theoretic

considerations.

For illustrative purposes we consider the example of an SU(2)3 theory, which corresponds

to taking six 4-branes (two physical branes and their images) in a ZZ3 orbifold. The related

theory was discussed in [24] and the curve was obtained to be:

~t2 = (x2 � (�4
1 M2 + �4

2 M3 + �4
3 M1 �M1M2M3 + T 2))2 � 4�4

1�
4
2�

4
3: (4.7)

4Such terms are absent in the N = 2 SU (Nc) theory studied in [5], provided Nc > Nf . In this case

dimensional arguments and the fact that these corrections arise from instanton e�ects and are therefore

proportional to �b0 is enough to explain their absence.

8



Here, �1;2;3 are the three strong coupling scales, whileMi = Q2
i and T � Q1 �Q2 �Q3 are the

moduli. This curve is related to the one obtained in the brane construction, eq. (4.2) by a

shift and rescaling of the variables y and t. On doing so and comparing one �nds that the

M1M2M3 and T 2 terms in the �rst bracket in eq. (4.7) correspond to the leading dependence

of the coe�cients ui, while the �-dependent terms in the �rst bracket correspond to the

subleading terms we were worried about. Actually, strictly speaking we need to incorporate

the e�ects of the anomalous U(1)s in the curve, eq. (4.7), before comparing the two. This

is relatively simple to do in the orbifold limit where the Fayet-Iliopoulos terms for the two

anomalous U(1)s are zero5.

Let us pause for a moment to sketch this out. In a convenient basis, the U(1) charge

assignments of the three elementary �elds are, Q1 : (2; 0), Q2 : (�1; 1), Q3 : (�1;�1). The

corresponding D terms then imply:

4jM1j
2 � 2jM2j

2 � 2jM3j
2 = 0; (4.8)

and

2jM2j
2 � 2jM3j

2 = 0: (4.9)

In this example, the U(1) anomalies cancel due to appropriate shifts in two axion �elds.

One consequence is that the � dependent terms in eq. (4.7) acquire an axion dependence.

In describing the resulting curve it is simplest to carry out appropriate U(1) rotations (and

shifts in the axion �elds) to go to a gauge where the three �elds M1, M2 and M3 have the

same phase. Eq. (4.8) and (4.9) can now be used to solve for two of the �elds, say, M2 and

M3 in terms of third,M1. On substituting back in eq. (4.7) the resulting curve in this gauge

in terms of the moduli,M1 and T is given by:

~t2 = (x2 � (�4
1 + �4

2 + �4
3) M1 +M3

1 � T 2)2 � 4�4
1�

4
2�

4
3: (4.10)

The axion dependence in eq. (4.10) enters through the dependence of the strong coupling

scales on these �elds and can be easily worked out. The important point is that after going

through this procedure, in eq. (4.10) one sees that the subleading terms mentioned above

continue to persist, while the leading terms on which there was agreement in the two cases

are not changed in an essential way.

5. Generalizations of the Orbifold Brane Construction.

5.1 Additional vectorlike matter.

There are three obvious generalizations of our ZZM orbifold brane construction which add

massless vectorlike matter.
5Determining the curve away from the orbifold limit is an interesting problem which we hope to address

in a subsequent paper. This will also allow us to see whether the subleading terms arise in part because of

the orbifold nature of the background and can be determined by blowing it up.
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The �rst is obtained by adding M �Nf Dirichlet six branes at the origin in the (X4;X5)

plane. These 6-branes extend in the directions X1;X2;X3;X7;X8;X9 and do not break any

additional supersymmetries [3]. Once again, the tadpoles in the one-loop vacuum amplitude

must cancel in this theory. The only additional constraints arise from the twisted Ramond-

Ramond tadpole amplitudes for strings ending on these 6-branes6: the 6-branes are sources of

twisted RR ux which can only propagate in the X6 transverse direction, which is insu�cient

to allow the ux to escape to in�nity [26]. Therefore, the total twisted RR charge of the

6-branes has to vanish, and the matrices that represent the ZZM action on the six brane

Chan-Paton factors must also obey the conditions (2.4).

The massless excitations of the 4 � 6 strings give vectorlike matter with the following

transformation law under the SU(N)M � SU(Nf )
M symmetry (here we have denoted by

SU(Nf ) the 6-brane gauge group, which appears as a global symmetry in the 4-brane theory).

There areM �elds Fi (i = 1; � � � ;M), transforming as ( ; �) under SU(N)i�SU(Nf )i, which

are singlets under the other gauge and avor groups, andM �elds �Fi that transform as (�; )

under SU(N)i � SU(Nf )(i+1)(modM) (and, similarly, are singlets under the other gauge and

avor groups). The shift of indices for the �F �elds is due to the fact that the vertex operator

for the massless 4 � 6 string excitations transforms by a factor of e�i�=M under the ZZM

symmetry [25] and the Chan-Paton factors for the 6-branes obey M� = �1. Finally, as a

vestige of N = 2 supersymmetry, the following Yukawa couplings that preserve the SU(Nf )M

global symmetry will appear in the superpotential:

W = F1QMFM + F2Q1F 1 + F3Q2F 2 + � � �+ FMQM�1FM�1 : (5.1)

It will become clear in the following that this spectrum (and superpotential) is the only one

consistent with �eld theoretic considerations and nonabelian duality.

Another generalization is obtained by adding more NS branes. The simplest example is

illustrated in Fig. 2. This con�guration can be obtained by starting with Nf physical four-

branes stretched between two NS branes without any six-branes. One then brings a third

NS brane in from in�nity along the X7 direction, until it intersects the middle of the four-

branes. One can then break the four-branes on this new NS brane; the gauge group at this

point is clearly SU(Nf )M �SU(Nf )M . Now one can move Nf �N of the left-hand physical

four-branes together with their ZZM images o� to in�nity in the (X4;X5) plane, where they

have no e�ect on the light spectrum of the remaining brane con�guration. Thus we deduce

that Fig. 2 represents an orbifold model with gauge group SU(N)M � SU(Nf )M , with

chiral matter content under SU(N)M and SU(Nf )M of the form (2.1). In addition there is

vectorlike matter corresponding to chiral multiplets Fi (i = 1; � � � ;M), transforming as ( ; �)

6The twisted RR amplitudes from 4-6 strings can be already seen to vanish since the matrices representing

the action of the twist on the Chan-Paton factor of the 4-branes obey (2.4).
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NS NS NS

Figure 2: The Type IIA brane con�guration for a class of generalized ZZM orbifold models.

There are N physical four-branes stretched between the �rst pair of NS �ve branes, plus

their ZZM images. There are Nf physical four-branes stretched between the second pair of

NS �ve branes, plus their ZZM images.

under SU(N)i � SU(Nf )i, �Fi that transform as (�; ) under SU(N)i � SU(Nf )(i+1)(modM)

(both F and �F are singlets under all the other gauge groups). There is also a superpotential,

which is the sum of the superpotentials (5.1) for the gauge groups SU(N)M and SU(Nf )M ,

respectively.

The third generalization consists of attaching semi-in�nite four-branes to the left- or right-

hand NS brane. This is equivalent (modulo the discussion in [19]) to taking the con�guration

of Fig. 2 and moving the left- or right-hand NS brane o� to in�nity in the X6 direction. The

new vectorlike matter consists of Nf avors for each SU(N), with superpotential (5.1) (in

the limit that the left- or right-hand NS brane is pushed o� to in�nity, the gauge coupling

of the corresponding 4-brane theory goes to zero and the contribution to the superpotential

from the SU(Nf )M gauge group vanishes). It appears therefore that this construction is

related to the construction with 6-branes by the Hanany-Witten process: after pushing the

6-branes through one of the NS branes, a set of Nf 4-branes stretched between the NS brane

and the 6-branes is created; after moving the 6 branes to in�nity we obtain the construction

with semi-in�nite 4-branes described above.

It is clear that the generalizations discussed above can also be obtained from N = 2

theory with matter after eliminating states that are not invariant under an appropriately

chosen ZZM discrete global symmetry, in the same way that was discussed in the end of
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Section 2 for the pure Yang-Mills N = 2 theory.

5.2 Nonabelian duality.

Here we discuss one more check on our orbifold construction with extra matter �elds.

The N = 1 theory with gauge group SU(N)M , with matter content given by eq. (2.1) plus

additional Nf avors of each SU(N) factor, and a superpotential given by eq. (5.1) was

considered in ref. [31]. By an iterative application of the N = 1 SQCD dualities it was found

that the theory has an equivalent infrared description|along the Higgs branch|in terms

of an SU(Nf �N)M theory with the same matter content and superpotential. The theories

along their respective Coulomb branches are clearly di�erent, as follows from the di�erent

number of unbroken U(1)s at a generic point on the Coulomb branch moduli space.

The SU(Nc)M , SU(Nf�Nc)M duality is related to the duality of the Higgs branches of

N = 2 SQCD with gauge groups SU(MNc) and SU(M(Nf�Nc)). This duality is easy to see

in the brane construction [1], [3]. Consider the brane con�guration of Fig. 1. Pushing the Nf

6-branes (we count only the physical branes here) to the left of the left NS brane, we obtain

a con�guration with Nf 4-branes stretching between the Nf 6-branes and the left NS brane.

Then we enter the Higgs branch of the theory by reconnecting the Nc 4-branes stretching

between the two NS branes with Nc of the newly created 4-branes and rearranging them in

the most general way consistent with the s-rule [3]. Thus we obtain a con�guration where

Nc 4-branes stretch between the 6-branes and the right NS brane while Nf � Nc 4-branes

stretch between the 6- branes and the left NS brane. Now we can move the two NS branes

past each other in the X6 direction and reconnect once more the 4-branes, obtaining thus a

con�guration where Nf �Nc 4-branes stretch between the two NS branes, and Nf 4-branes

between the 6-branes and the leftmost NS brane. This setup describes the Higgs branch

moduli space of the SU(M(Nf � Nc)) N = 2 theory with Nf avors. Orbifolding by the

ZZM symmetry does not a�ect the previous argument in any essential way. We thus obtain

a brane realization of the Higgs branch duality between the SU(Nc)M and SU(Nf �Nc)M

theories.
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